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The orthogonality of the generalized Laguerre polynomials, {L!¥(x)},=,, is a
well known fact when the parameter « is a real number but not a negative integer.
In fact, for —1 <, they are orthogonal on the interval [0, + oo) with respect to the

oa, —x

weight function p(x)=x% "% and for a< —1, but not an integer, they are
orthogonal with respect to a non-positive definite linear functional. In this work we
will show that, for every value of the real parameter o, the generalized Laguerre
polynomials are orthogonal with respect to a non-diagonal Sobolev inner product,
that is, an inner product involving derivatives.  © 1996 Academic Press, Inc.

1. INTRODUCTION

Classical Laguerre polynomials are the main subject of a very extensive
literature. If we denote by {L{’(x)},~, the sequence of monic Laguerre
polynomials, their crucial property is the following orthogonality condition

+ oo
(L LY = L) L) xe ™ dx =k, 0., (L1)
0
where m, ne N, k,#0 and the parameter a satisfies the condition —1 <«
in order to assure the convergence of the integrals.
For the monic classical Laguerre polynomials, an explicit representation
is well known (see Szegd [ 5, p. 102]):

_1) »
L= Y SR s (12)
= ! n—j

where () is the generalized binomial coefficient

a I(a+1)

b) I(b+1)I(a—b+1)
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Now, we can consider (1.2) for an arbitrary value of the parametera € R. For
a fixed value of a, expression (1.2) provides a family of polynomials, called the
generalized Laguerre polynomials. Obviously, they constitute a basis for the
linear space of real polynomials, since deg(L‘*) = n for all n > 0.

For any value of « we can obtain from expression (1.2) a three-term
recurrence relation which is satisfied by the generalized Laguerre polynomials

L%(x)=0, L{=1,
XLy (x) = Ly (x) + B L7 (x) + Ly (x),

n—1

(1.3)

where
B =2n+a+1, P =n(n+a).

Therefore, for a¢ {—1, —2,..} we have y{”#0 for all n>0, and from
Favard’s theorem (see Chihara [1, p. 21]), we conclude that the family
of polynomials {L!{™(x)},~, is a monic orthogonal polynomial sequence
associated with a quasi-definite linear functional. For —1 <a, the linear
functional is positive definite. However, for ae { —1, —2, ...}, no orthog-
onality results can be deduced from Favard’s theorem since »'*) vanishes
for some value of n.

In a recent paper [3], after several pages of hard computations, Kwon
and Littlejohn establish the orthogonality of the generalized Laguerre
polynomials {L'(x)},~,, k=1, 2, .. with respect to an inner product
involving some Dirac masses and derivatives.

In this work we will show that, for every value of the parameter «,
the generalized Laguerre polynomials {L{(x)},~, are orthogonal with
respect to a non-diagonal Sobolev inner product, that is, an inner product
(f(x), g(x)) defined by means of the following expression

(). )= | Flx) AG()".
where k>0, F(x), G(x) are two vectors defined by

F(x) = (f(x), (%), e, 1)),

G(x) = (g(x), &'(x), .., §“(x)),

and A is a symmetric positive definite matrix whose elements are signed
Borel measures.

In our case, we shall consider the following non-diagonal Sobolev inner
product

(00 (D@ = [ Fx) MUk) G xve d, (14)
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where M(k) is a matrix which (i, j) entry is defined by

min{i,j} k- h—
=" o (YR, o e
p=0

and a > —1, in order to ensure the convergence of the integrals.
When k=0, the Sobolev inner product (1.4) coincides with the classical
Laguerre inner product, because M(0)=1, and therefore

+ 0
(f(x), g(x)§" " = fo f(x) g(x) x%e ™" dx = (f(x), g(x)) 7.
The main result in this paper is given by the following theorem

THEOREM. Let {L)(x)}, =, be the generalized monic Laguerre polyno-
mial sequence, with o. an arbitrary real number. Then { L'™(x)} = o is the monic
orthogonal polynomial sequence, (in short, the MOPS) with respect to the non-
diagonal Sobolev inner product (-,-)§**%, where k =max{0, [ —a]}, and

[o] denotes the greatest integer less than or equal to o.

As a consequence of this theorem, we can get a global understanding of
the generalized Laguerre polynomials as a MOPS with respect to a non-
diagonal Sobolev inner product like (1.4).

In Section 2, we will define the monic generalized Laguerre polynomials,
for e R, by using their explicit expression, and we give some of their
properties, which will be essential in this paper.

Section 3 is devoted to the definition of the non-diagonal Sobolev inner
product (1.4). Finally, in Section 4 we will prove the theorem that shows
the orthogonality of the generalized Laguerre polynomials, and we will
obtain the results of Kwon and Littlejohn [3] as a particular case.

2. GENERALIZED LAGUERRE POLYNOMIALS

For aeR, the nth degree monic generalized Laguerre polynomial is
defined by means of the following expression

LO(x)=(=1)"n! Y (_.l)j<n+“>xf, n=0. (2.1)

= J! n—j
Note that the generalized Laguerre polynomial L'*)(x) satisfies
deg(L'™)=n n=0.

In this way, for a given o € R, the family of the generalized Laguerre poly-
nomials is a basis for the linear space of the real polynomials, which we will
denote by P.
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In the following lemma, we give some of the properties of the generalized
Laguerre polynomials, which will be essential in the rest of the paper. The
first three properties are well known and can be deduced from the explicit
expression for these polynomials. Property (iv) can be shown by using
induction on k, and applying properties (ii) and (iii).

LemmaA 2.1. Given a€eR, let k=0, n>1 be integers. Then

(1) (Recurrence relation)

L' (x)=0, LP(x)=1,

(22)
XLE(x) =L+ BOLY(x) + 9 L™ (x),
where 0 =2n+oa+1, ¥ =n(n+a),

(i) (LYY (0)=nLE (), 3

(ii1) L'(x)=L""Y(x)+nL>* " (x), (2.4)
k Ak A

(i) Lo =5 -1 ) e (23)

i=0

From Favard’s theorem (Chihara [1, p. 21]) and property (i), we
deduce that the generalized Laguerre polynomials are a MOPS with
respect to a regular linear functional if

P£0,  nx=l,

that is, if a¢{—1, —2,..}. Moreover, for a> —1, the generalized
Laguerre polynomials are the classical Laguerre polynomials which are
associated with a positive definite linear functional.

3. THE NON-DIAGONAL SOBOLEV INNER PRODUCT

Let k>0 be an integer. Let us define a matrix with dimension k + 1 by

M(k) = (m; ;(k));;

i,j=0>
where each element in the matrix is given by
min{i,j} Sk — ke —
m, (k)= (—1)’*’(. p>< . p), 0<i, j<k.
. p=0 I=p J—D

LemMma 3.1. M(k) is a positive definite matrix, with determinant equal
to 1.
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Proof. Obviously M(k) is a symmetric matrix and its positive definite

character follows from the Cholesky factorization for M(k) [4, p. 174],
that is, for a lower triangular matrix L(k) one has

M(k)=L(k) L(k)".
In fact, if we write

0 0 . 0

1

- 11€> 1 0 .. 0
o= (3) (. i 0
(—1);‘<llz> (—1)“@21) (—1)k;<llz:§>

we can easily deduce

—_—

Finally, det(M(k))=det(L(k) L(k)")=1. |

From the definition of the matrix M(k), we can get a recursive scheme
to compute it.

LEmMA 3.2. Let k>=1. Then

M(k)=|: M(k—1)
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Now, we can define the non-diagonal Sobolev inner product.
For an integer k>0 and a> —1, we define the symmetric bilinear form
(, )% by means of the expression

(fg) = [ Pl Mk Glx) e (3.1)

where F(x) and G(x) are two vectors defined by

F(x) = (f(x), f1(%), ey fPUX)),
G(x) = (g(x), g'(x), ..., g¥(x)).
Note that, since a > — 1, all the integrals in this expression are finite, and
as a consequence of the positive definite character of the symmetric matrix

M(k), we conclude that (3.1) is an inner product.
If we denote

(Lo =] S gl ve d. (32)

the classical Laguerre inner product for « > —1, then

(e =(fe)

since M(0) =1 by definition.
From Lemma 3.2, we deduce that the non-diagonal Sobolev inner
product defined in (3.1) can be written in a recursive way:

PrOPOSITION 3.3, Let k=1 be an integer. Then

(fg(' ) f g)(k 1o<>+ Z _ t+/<ll€>< > f(t) (/) (0 @) (3_3)

i,j=0

4. ORTHOGONALITY OF THE GENERALIZED
LAGUERRE POLYNOMIALS

In this section, we will show that the generalized Laguerre polynomials
are orthogonal with respect to a non-diagonal Sobolev inner product like
(3.1).

THEOREM 4.1. Let ae€R. Then the monic generalized Laguerre poly-
nomials {L'*(x)}, =, are a MOPS with respect to the non-diagonal Sobolev
inner product (-,-)&** where k=max{0, [ —a]}.
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Proof. Obviously, for a« > —1 we have k=0. Therefore, the monic
generalized Laguerre polynomials are a classical MOPS, and from the
properties of the Sobolev inner product, we have

('7 ')fS(‘),a-'—O) =(" ‘)(“)'

Given a < —1, from the definition, we have kK =[ —a], and therefore all
the integrals are finite. We will show the result by using induction on k.

For k=1, we will multiply two generalized Laguerre polynomials with
different degrees L'™(x) and L!¥(x), where n##m, but n, m>1. By using

Proposition 3.3, and the properties of the generalized Laguerre poly-
nomials (2.3) and (2.5), we get

(L LG
Z((L(a))’, (L o()) )(0 a+1)

m

S
1 l .
+ Z _1 z+/< >< > L(oc) (i) (L(Y’O;))(J))go,a+1)

i, j=0

znm(L(oc+l) Le+D ) (0, +1)

n—1 >~ m—1

1 ' 1 1 1 ) (0, c+1)
+< Z (_1)t<l> L(a) (t)’ Z <]> (L(Z))“)>

1 1)) (0, 1) _
:(LE,OH— )’ L£Z+ ))S o+ )—O.

The cases when n=0 or m =0 are trivial.

Now, we assume that the property is true for k—1 and we will show it
for k. We will multiply two generalized Laguerre polynomials with different
degrees L'*(x) and L{¥(x), where n##m, but n,m>1 (the cases n=0 or
m =0 are trivial). Using again the Proposition 3.3, the properties (2.3) and
(2.5), and the induction hypothesis, we get

(L(oc) L(u))(/ x+k)

m

— ((L(noc))l, (L(oc))/)(sk—],oc-#k)

m

3 e () g agog
ij=0 J

znm(L(oc+l) L(oc+l )(kfl,a+1+k71)

n—1 >~ m—1

+< ]Z( (—1)’<Il€> oc) (t) i (_1 <i€> (L(:;))(j)>(0,a+k)

i=0 = S

(L (e + k) L(oc+A))(O a+k) __ O I
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Remark. 1In the case when ae{—1, —2, ..}, we have k=[ —a] = —a,
and the non-diagonal Sobolev inner product can be written in the following
way

+ o
(% =] Fx) M(k) G(x)" e dx.
0
In this case, taking integration by parts we can write

(f.9)§ Z Z m, ;(K)[£(0) g/(0) +£1"(0) g”(0)]

+jm F9(x) g®(x) e dx. (4.1)

This inner product is the same as the one introduced by Kwon and Littlejohn
[3]. These authors, after several pages of combinatorial computations,
show that the generalized Laguerre polynomials {L'X(x)},~, are
orthogonal with respect to the inner product (4.1).
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